- is this insight just observed by chance or is it a real insight?
Statistical significance can be accessed using hypothesis testing:
– Stating a null hypothesis which is usually the opposite of what we wish to test (classifiers A and B perform equivalently, Treatment A is equal of treatment B)
– Then, we choose a suitable statistical test and statistics used to reject the null hypothesis
– Also, we choose a critical region for the statistics to lie in that is extreme enough for the null hypothesis to be rejected (p-value)
– We calculate the observed test statistics from the data and check whether it lies in the critical region
Common tests:
– One sample Z test
– Two-sample Z test
– One sample t-test
– paired t-test
– Two sample pooled equal variances t-test
– Two sample unpooled unequal variances t-test and unequal sample sizes (Welch’s t-test)
– Chi-squared test for variances
– Chi-squared test for goodness of fit
– Anova (for instance: are the two regression models equals? F-test)
– Regression F-test (i.e: is at least one of the predictor useful in predicting the response?)
Source